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References [ l-3 I determined pressure, frontal drag, heat transfer, and 
skin friction of blunt bodies moving uniformly in free-molecular flow of 
rarefied gas. 

In the present paper, the total force, acting on a unit surface, which 
performs small unsteady motions while moving forward, is determined, as 
well as its projection in directions corresponding to normal pressure, 
friction, etc. An attempt is made to assess the validity of analysis of 
flows around concave surfaces with the usual free-molecular assumptions. 
In the process, conditions on the shape of such surfaces and on their 
motion are established. As a concrete example, the flow around an oscill- 
ating flat plate is analyzed. It is found that the expression for the 
additional pressure due to the oscillation agrees, up to a multiplicative 
constant, with a known formula of the “piston theory”, which can well be 
of theoretical interest. 

1. Let the surface move forward through the rarefied gas with velocity 
V relative to a coordinate system* fixed in space and designate this 

motion as w~disturbe~. Also let the body perform small oscillations 

relative to this undisturbed motion. We shall take the molecular dis- 

tribution in the approaching stream to be Maxwellian. The distribution 

function referred to a local coordinate system embedded in the surface, 

takes the form 

* Translator’s Note: The reader will find it helpful to refer to Section 
2, following equation (2.21, for specific definitions of the fixed and 
local coordinate systems used by the author. 
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1 
N, (h, /~~)“xexp [- h,(c + u)~] when c.n < 0 

f(e.U)= IV,(h,/7i)‘~~(1-s)exp{-~h,[c+u-22n(c.n)]2}-f (1.1) 

f &’ (/I/ X)*l*exp {- hc2} when C.II > 0 

(h = m, / 2kT) 

Here c is the molecular velocity relative to the surface, u the velo- 

city of disturbed motion of the surface relative to the fixed reference 

system, n - the normal to the surface in its perturbed instantaneous posi- 

tion, N- number of molecules per unit volume, tag - the mass of individual 

molecules, k - the Poltzman constant. In accordance with [ 1 1 , the ex- 

pression for T was taken in the form* T = To + a/c CT, - To) where T, is 
the temperature of the wall, a - the accommodation coefficient, To - the 

throttling temperature. The sub script refers to parameters of the medium 

at infinity, while the absence of subscripts indicates conditions of the 

mediun near the body. 

The distribution function (1.1) corresponds to free-molecular flow 

around the body when the mean free path exceeds the characteristic length 

of the body. For the model of interaction between molecules and surface 

a combination of specular and diffuse reflection [ 1, p, 662 I in the 

ratio c is assumed. 

We determine the force acting on the surface from the relation 

dK=-FFclt 

K is the impulse. From the change in K due to the impact of molecules on 
the surface we find the force per unit time: 

F = - (m, 7 dcl y dc2 a cf (c, u) dc3 + m. s dc’ r dc2 i (cn) cf (c, U) dc’) 

--ca -CO 0 --co --Q) --co 

Substituting for f(c, u) from expression (1. I) we obtain: 

F = - ~~~ u 
{ 
y [I + erf (fh, u . n)] + exp ‘Jh++_J n)B1 } - 

co 

-poo(.2-22E)n(u en) 
t 

~[l+erf(Y~u.n)~+exp’~~~~‘n”l}- 

- ‘2-4, pmn [I + erf (fi-,u 
cl.3 

* n)] - T (1.2) 

Projection of the vector F on - n (with minus sign because the positive 

direction of the normal is outward) leads to the expression for the 

pressure 

l Translator’s Note: E is the fraction of impinging molecules which are 
reflected diffusely. 
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ProjectingF in the tangential direction, t, in the plane of the local 
normal and the velocity u, we find the expression for frictional stress: 

Similarly one can evaluate frontal drag and total lift. 

Following the same procedure one can derive the expression for the 
mount of energy, E, which the impinging molecules transfer to the sur- 
face per unit time, 0% re only the kinetic energy of the molecules is 
taken into account.) 

E 
--co --co --se --w--ma 

With expression (1.1) for f(ci U) one has: 

'The expression P = m,N, which appears in equations (1.2)-(l.S), can 
be evaluated by considering the conservation of mass of the surface 

-~~*~~~1~~~2 ~.~o'~~~~~,~~~~~~~ ~~~~~dca~~~-.n)i(o,u)dr:l 

-rxJ --a3 -to --n --cm 61 

Hence 

P=Poo( v- T, Texp[-?z,(u s nf2] Jr (13. n)Z/-T;h11+ erf(~~~~ a a)]) ffi.6) 

The expression for 15' can be utilized for the determination of the 
heating of the body when additional specific ass~tions are made about 
the character of heat transfer. 

2. fn the derivation of formulas (f.2t-(f.6) it was assumed that the 
impinging molecules come to the surface from "infinity" in the sense-that 
the distribution function was taken to be Maxwellian when (e + n) < 0, 
corresponding to nboundary conditions* which, strictly speaking, are valid 
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only for blunt bodies. We shall assess the errors allowed in the deriva- 
tion of (l-2-(1.6) by neglecting the fact that for concave bodies the 
locally impinging molecules not only come from *infinity* but also arrive 

after reflection from another part of the surface. 

With reference to the figure, one sees that for rigid surfaces such 
reflected molecules encounter the surface again, if the angle of their 
path relative to the local tangent is smaller or equal to /3. Since the 

velocities of the molecules are very large, one can assume that distances 
conparable to dimensions of the body in question are traversed by the 
molecules instantaneously. ‘Then the counting of the molecules which meet 

the surface again after an earlier reflection, in the case of surfaces 
deforming with time, proceeds just as in the case of rigidly moving sur- 

faces. 

Let us find the nunber of molecules reflecting at angle (, or less: 

The domain of integration Q is* 

-oO<Cl<OO, -oo<c”<-cc, 0 \<c3 s tg p V(c’y + (c2Y 

Evaluating n,+ we obtain: 

EN 
na = - tkP B 

zy’+l-Q”B +(I 
- a)N,(u~n)sin~( 1/$Uexp(-h,U2)_+ 

+-+- 
N,(f -4 

Zl/xh, 
sins p exp (-:h,u’) - 

It is clear from (2.1) that to ensure that nF be small the following 

conditions are sufficient: 

where co is the most probable molecular speed in the undisturbed medium. 

Then it is permissible to neglect the molecules which meet the surface 
a second time after reflection in comparison with the totality of imping- 
ing molecules. As can be seen from (2.2), the error decreases, as u = \U 1 

* Translator’s Note: The axis identified by superscript 3 is in the 
normal direction n. 
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increases. 

Let the location of the undisturbed surface be characterized by the 

radius vector 

r (9, t) = rO (9) $ vi! 

relative to the coordinate system fixed in space. Let the principal co- 
ordinate system be defined by r Id. r2 r3 = 

v where u is the unit vector 

normal to the surface in the un lsturbed motion. Let the position of the 

deforming surface be given by the radius vector 

R (S, t) = r (Xi, t) -t- w (59, t) 

where w(xi, t) = I&, is the displacement vector. ‘Ihe velocity of the 
disturbed motion of the surface becomes: 

dR 
u = u=rcr = Y&-- = -Jj- ar ++ (u” t- W’+./J ra 

Evaluating II = rPra an? u - II = uana, one can see that, in order to 

make np small, it is sufficient to consider only small J/co, w3/tco, 

W3/ .; so that only the terms linear in these quantities need be kept in 

the’expressions for n and II l n. From geometry (see Fig. 1) one can see 

that the preceding conditions are sufficient to satisfy conditions (2.2). 

The notation w’ .,,I~, after Kagan [ 4 1 , signifies covariant differentiation, 

carried out relative to the local base ri. 

Putting u?./ - - 

stipulated accuzacy 

1 in order to facilitate station, we obtain to the 

n = - rargak.$, U * n = W3.jt - V’lWf/, 

where g”p is the metric tensor of the coordinates ri. 

‘ ‘\ \ \ 
Fig. 1. 

Substituting n, U, u l n in (1.2)-(1.6) and keeping only terms linear 

in the small quantities, we obtain 

“,‘$ (2;” f wa.,t) - --y- EPcn (v” - f&v) (wa.,, - V”W”.,J A- 
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f (2.4) 

(2.5) 

(Here, the vector t is determined to the same accuracy from the conditions 

that t - n= 0, It/ = 1 and that t, n and u are situated in the same 

plane). 

(7',- T) + -L((C=DPC'aD -I- 2g&wQ) +- 

R 
+ f [zw&~ (W”.,J - z.“W3.,,)] + - (5RI', - 47) (W".,t - C'~W3.,J 

2 i 
(2.6) 

3. As an illustration, let us consider the case of a flat plate slid- 

ing at zero angle of attack with a velocity v in the direction of the 

x1 axis. Here x1 and x2 are Cartesian coordinates in the plane of the 

plate. Let the oscillatory motion be restricted to the x3, i.e. v direct- 

ion. Then 

8W 

W1EW2f 0, v2 EE v3 z?z 0 , 203 = w, ---r W3./j = ax3 P 

9W 
w3./1 = z 

In this case the forces acting on the plate can be expressed in terms 

of the derivatives of the plate deflections and of the thermodynamic 

variables 

(3.1) 
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P,EV co 

[ 

dW L3W 
-C=--- 

2 vn --=-+3---7’~ 
3 

The rate of energy transfer to the plate is 

,+‘{2~ Co &T,-T)$-+ +- 
n 

t $+~(5T,-44)](-$--~$ II x- 

(3.3) 

(3.4) 

Consider the expressions for the pressure (1.3) and (3.2). Men the 

surface is not disturbed, the pressure on it is 

there P, = PJ T,, the pressure in the undisturbed medium. lhe pressure 

on the plate reduces to that in the free stream either when 6 = 0 (pure 

specular reflection, corresponding to the limiting case of an ideal fluid) 

or when a = 0 (no interchange of energy hetween gas and surface [l I). 
IIn case of interaction between molecules and surface, in which there is 
exchange of energy, the pressure and the density at the quiescent surface 

differ from p, and p, of the undisturbed medium. 'Ibis possibility in rare- 

fied gases was already noted by h&well [ 5 1. ’ 

Consider the additional pressure on the plate due to its disturbed 

motion: 

Ap==p-PO== 
ep, Jf2 rtRT 

4 
+ 

> 
(3.5) 

Expression (3.5) agrees up to a multiplicative constant with the 

linearized formula for the pressure in the "piston" theory. 'Ihis agree- 

ment is natural, since the restrictions on the form of the surface and 

its angle of attack are the same in the two cases, and the limiting con- 

ditions on the distribution function in the form (1.1) effectively imply 

the hypothesis of "plane sections" on which the "piston" theory is based.* 

* Translator's Note: See Section 2.4 of Hayes-Probstein: Hypersonic 

Flov Theory,Academic Press 1959, for discussion of the hypothesis, in 

English. 
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The difference consists mainly in the effect of diffusive reflections, 

i.e. in allowing for partial or fulk adherence of the gas to the surface 

(governed by the magnitude of t ), we pass beyond the domain of ideal gases 

(in the sense of limiting conditions). 

In a series of papers (for instance, [S 1) the interaction between 

thin elastic panels and gas streams was considered in which the additional 

pressure due to the panel motion was accounted for by the piston theory. 

Simple conversion of magnitudes to the case of rarefied gases shows that 

many aeroelastic effects observed at ordinary altitudes could be signi- 

ficant at very high altitudes but only at high flight speeds not yet 

reached (forces otherwise being negligibfy small). One can show, however, 

that in certain unfavorable cases in presence of thermal stresses, ques- 

tions of dynamic stability of panels and shells may be of definite interest, 

JZxpressions similar to (3.2)-(3.5) can he obtained for a cone moving 

at zero angle of attack with a velocity v. 'Ihe cone angle must be small 

so that terms like (V/C') sin p can be neglected. 7he meridional angle q!~ 

and the distance 1 along the generators of the cone serve as the basic 

polar coordinates. Then, with identical assumptions on the disturbed motion 

of the surface: 

vsin ,3 
I 

For cylindrical surfaces moving in the direction of 

velocity v: 

where the polar coordinates are the meridional angle # 

I along the generators. 

their axes with 

d$) (3.6) 

(3.7) 

and the distance 

Expressions (3.6) and (3.7) are identical with those for the flat 

plate. Similar derivations can be carried out for still other surfaces 

which satisfy conditions (2.2). 
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